Sociologist
IMG-1101.jpg

Reliability of replications

The reliability of replications: a study in computational reproductions
Royal Society Open Science 12: 241038 (with Nate Breznau, Elke Mark Rinke, Alexander Wuttke … and 165 co-authors)

This study investigates researcher variability in computational reproduction, an activity for which it is least expected. Eighty-five independent teams attempted numerical replication of results from an original study of policy preferences and immigration. Reproduction teams were randomly grouped into a ‘transparent group’ receiving original study and code or ‘opaque group’ receiving only a method and results description and no code. The transparent group mostly verified original results (95.7% same sign and p-value cutoff), while the opaque group had less success (89.3%). Second-decimal place exact numerical reproductions were less common (76.9 and 48.1%). Qualitative investigation of the workflows revealed many causes of error, including mistakes and procedural variations. When curating mistakes, we still find that only the transparent group was reliably successful. Our findings imply a need for transparency, but also more. Institutional checks and less subjective difficulty for researchers ‘doing reproduction’ would help, implying a need for better training. We also urge increased awareness of complexity in the research process and in ‘push button’ replications.

click for PDF | doi: 10.1098/rsos.241038

Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
Proceedings of the National Academy of Sciences 119 (44): 1-8 (with Nate Breznau, Eike Mark Rinke, Alexander Wuttke … 165 co-authors)

This study explores how researchers’ analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers’ expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team’s workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers’ results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.

click for PDF | doi: 10.1073/pnas.2203150119